12 research outputs found

    Class-D Audio Amplifier using Sigma-Delta (ΣΔ) Modulator

    Get PDF
    Pulse width modulation and pulse density modulation are deemed to be main modulation techniques, even PDM could not emulate PWM, in terms of, basically, simplicity. PDM bitstream is encoded through sigma-delta modulation. Since sigma-delta modulation, compared to PWM, needs very high switching frequency and more complicated materials to compose circuits, it’s more difficult to design one. In this article we design a low-power class-D audio amplifier circuit where the analog signal is encoded into pulse density modulation (PDM) using a first-order sigma-delta (ΣΔ) modulator. The designed circuit is built using Orcad-PSpice and results are analyzed with Matlab. A second-order integrator, a voltage divider as a feedback loop are used to mitigate basically, THD and get high efficiency. The audio signal is passed to the EM speaker through a Butterworth low-pass filter. A low THD of less than 0.2 % is obtained comparing to similar circuits in the literature and a high efficiency of 92 % is achieved.

    Modeling of Charge Transfer Inefficiency in a CCD with High Speed Column Parallel Readout

    Full text link
    Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying short-lived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of a future Linear Collider. The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. An Analytic Model has been developed for the determination of the charge transfer inefficiency (CTI) of a CPCCD. The CTI values determined with the Analytic Model agree largely with those from a full TCAD simulation. The Analytic Model allows efficient study of the variation of the CTI on parameters like readout frequency, operating temperature and occupancy.Comment: 5 pages, 13 figures, presented on behalf of the LCFI Collaboration, proceedings IEEE 2008 Nuclear Science Symposium, Dresden, Germany, and 11th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD08) 2008, Siena, Ital

    Face Presentation Attack Detection Using Deep Background Subtraction

    Get PDF
    International audienceCurrently, face recognition technology is the most widely used method for verifying an individual’s identity. Nevertheless, it has increased in popularity, raising concerns about face presentation attacks, in which a photo or video of an authorized person’s face is used to obtain access to services. Based on a combination of background subtraction (BS) and convolutional neural network(s) (CNN), as well as an ensemble of classifiers, we propose an efficient and more robust face presentation attack detection algorithm. This algorithm includes a fully connected (FC) classifier with a majority vote (MV) algorithm, which uses different face presentation attack instruments (e.g., printed photo and replayed video). By including a majority vote to determine whether the input video is genuine or not, the proposed method significantly enhances the performance of the face anti-spoofing (FAS) system. For evaluation, we considered the MSU MFSD, REPLAY-ATTACK, and CASIA-FASD databases. The obtained results are very interesting and are much better than those obtained by state-of-the-art methods. For instance, on the REPLAY-ATTACK database, we were able to attain a half-total error rate (HTER) of 0.62% and an equal error rate (EER) of 0.58%. We attained an EER of 0% on both the CASIA-FASD and the MSU MFSD databases

    Simulations of the Temperature Dependence of the Charge Transfer Inefficiency in a High-Speed CCD.

    No full text
    Results of detailed simulations of the charge transfer inefficiency of a prototype serial readout CCD chip are reported. The effect of radiation damage on the chip operating in a particle detector at high frequency at a future accelerator is studied, specifically the creation of two electron trap levels, 0.17 eV and 0.44 eV below the bottom of the conduction band. Good agreement is found between simulations using the ISE-TCAD DESSIS program and an analytical model for the former level but not for the latter. Optimum operation is predicted to be at about 250 K where the effects of the traps is minimal; this being approximately independent of readout frequency in the range 7-50 MHz. This work has been carried out within the Linear Collider Flavour Identification (LCFI) collaboration in the context of the International Linear Collider (ILC) project

    Radiation hardness studies in a CCD with high-speed column parallel readout

    No full text
    Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying shortlived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of the International Linear Collider (ILC). The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. The results of detailed simulations of the charge transfer inefficiency (CTI) of a prototype CPCCD are reported and studies of the influence of gate voltage on the CTI described. The effects of bulk radiation damage on the CTI of a CPCCD are studied by simulating the effects of two electron trap levels, 0.17 and 0.44 eV, at different concentrations and operating temperatures. The dependence of the CTI on different occupancy levels (percentage of hit pixels) and readout frequencies is also studied. The optimal operating temperature for the CPCCD, where the effects of the charge trapping are at a minimum, is found to be about 230 K for the range of readout speeds proposed for the ILC. The results of the full simulation have been compared with a simple analytic model

    Modeling of radiation hardness of a CCD with high-speed column parallel readout

    No full text
    Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying short-lived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of a future Linear Collider. The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. Radiation hardness is an important aspect in the CCD development. Bulk radiation damage in the silicon leads to electron traps and hence to charge transfer inefficiency (CTI). The effects of the two trap levels 0.17 and 0.44 eV are considered. We have extended our Analytic Model to include the effects of the shape of the signal charge packet and the clock voltage on the CTI determination. The CTI values determined with the Analytic Model largely agree with those from a full TCAD simulation

    MPX detectors as LHC luminosity monitor

    No full text
    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at √s = 8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX luminosity measurements are below 0.3% for one minute intervals
    corecore